skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hohimer, Cameron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite promising results in the rehabilitation field, it remains unclear whether upper limb robotic wearables, e.g., for people with physical impairments resulting from neurodegenerative disease, can be made portable and suitable for everyday use. We present a lightweight, fully portable, textile-based, soft inflatable wearable robot for shoulder elevation assistance that provides dynamic active support to the upper limbs. The technology is mechanically transparent when unpowered, can quantitatively assess free movement of the user, and adds only 150 grams of weight to each upper limb. In 10 individuals with amyotrophic lateral sclerosis (ALS) with different degrees of neuromuscular impairment, we demonstrated immediate improvement in the active range of motion and compensation for continuing physical deterioration in two individuals with ALS over 6 months. Along with improvements in movement, we show that this robotic wearable can improve functional activity without any training, restoring performance of basic activities of daily living. In addition, a reduction in shoulder muscle activity and perceived muscular exertion, coupled with increased endurance for holding objects, highlight the potential of this device to mitigate the impact of muscular fatigue for patients with ALS. These results represent a further step toward everyday use of assistive, soft, robotic wearables for the upper limbs. 
    more » « less
  2. Textile based pneumatic actuators have recently seen increased development for use in wearable applications thanks to their high strength to weight ratio and range of achievable actuation modalities. However, the design of these textile-based actuators is typically an iterative process due to the complexity of predicting the soft and compliant behavior of the textiles. In this work we investigate the actuation mechanics of a range of physical prototypes of unfolding textile-based actuators to understand and develop an intuition for how the geometric parameters of the actuator affect the moment it generates, enabling more deterministic designs in the future. Under benchtop conditions the actuators were characterized at a range of actuator angles and pressures (0 – 136 kPa), and three distinct performance regimes were observed, which we define as Shearing, Creasing, and Flattening. During Flattening, the effects of both the length and radius of the actuator dominate with maximum moments in excess of 80 Nm being generated, while during Creasing the radius dominates with generated moments scaling with the cube of the radius. Low stiffness spring like behavior is observed in the Shearing regime, which occurs as the actuator approaches its unfolded angle. A piecewise analytical model was also developed and compared to the experimental results within each regime. Finally, a prototype actuator was also integrated into a shoulder assisting wearable robot, and on-body characterization of this robot was performed on five healthy individuals to observe the behavior of the actuators in a wearable application. Results from this characterization highlight that these actuators can generate useful on-body moments (10.74 Nm at 90° actuator angle) but that there are significant reductions compared to bench-top performance, in particular when mostly folded and at higher pressures. 
    more » « less